Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media.
نویسندگان
چکیده
Although the motility of the flagellated bacteria, Escherichia coli, has been widely studied, the effect of viscosity on swimming speed remains controversial. The swimming mode of wild-type E. coli is often idealized as a run-and-tumble sequence in which periods of swimming at a constant speed are randomly interrupted by a sudden change of direction at a very low speed. Using a tracking microscope, we follow cells for extended periods of time in Newtonian liquids of varying viscosity and find that the swimming behavior of a single cell can exhibit a variety of behaviors, including run and tumble and "slow random walk" in which the cells move at a relatively low speed. Although the characteristic swimming speed varies between individuals and in different polymer solutions, we find that the skewness of the speed distribution is solely a function of viscosity and can be used, in concert with the measured average swimming speed, to determine the effective running speed of each cell. We hypothesize that differences in the swimming behavior observed in solutions of different viscosity are due to changes in the flagellar bundling time, which increases as the viscosity rises, due to the lower rotation rate of the flagellar motor. A numerical simulation and the use of resistive force theory provide support for this hypothesis.
منابع مشابه
A bead-spring model for running and tumbling of flagellated swimmers: detailed predictions compared to experimental data for E. coli.
To study the swimming of the multi-flagellated bacterium Escherichia coli, we deploy a bead-spring hydrodynamic model (Watari and Larson 2010), whose body and flagellar geometry, motor torques, and motor reversals are adjusted to match the experimental observations of the Berg group (Turner et al. 2000; Darnton et al. 2007) during both running and tumbling of the bacterium. In this model, hydro...
متن کاملEffect of viscosity on bacterial motility.
The behavior of a number of motile flagellated bacteria toward viscosity characteristics of their fluid environments was observed. All showed an increase in velocity (micrometers per second) in more viscous solutions. Velocity reached a maximum at a characteristic value, however, and thereafter decreased with higher viscosities. Peritrichously flagellated bacteria had maximum velocities at high...
متن کاملHelical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape
It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnificat...
متن کاملOpposite and Coordinated Rotation of Amphitrichous Flagella Governs Oriented Swimming and Reversals in a Magnetotactic Spirillum.
UNLABELLED Current knowledge regarding the mechanism that governs flagellar motor rotation in response to environmental stimuli stems mainly from the study of monotrichous and peritrichous bacteria. Little is known about how two polar flagella, one at each cell pole of the so-called amphitrichous bacterium, are coordinated to steer the swimming. Here we fluorescently labeled the flagella of Mag...
متن کاملFlhF is required for swimming and swarming in Pseudomonas aeruginosa.
FlhF is a signal recognition particle-like protein present in monotrichous bacteria. The loss of FlhF in various bacteria results in decreased transcription of class II, III, or IV flagellar genes, leads to diminished or absent motility, and results in the assembly of flagella at nonpolar locations on the cell surface. In this work, we demonstrate that the loss of FlhF results in defective swim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 115 8 شماره
صفحات -
تاریخ انتشار 2018